DM3058 Characteristics

General Technical Characteristics

Power Supply:

AC 100~120V, 45~440Hz AC 200~240V, 45~66Hz

Power consumption: 20VA peak value

Dimension:

Height: 107.0mm Width: 231.6mm Depth: 290.5mm Weight: 2.5kg

Display:

256×64 LCD display, support dual display, menu, Chinese and Englisjh languages, operation help.

Working Environment:

Precision $0\sim50^{\circ}$ C, 80% R.H., 40° C, No coagulation

Storage Temperate: -20~70°C

Impact and Shake: According with MIL-T-28800E, III level, 5 Level (Only Sine)

Height above sea level: upper limit 3000m

Safety:

According with IEC61010-1: 2001. Measure CAT II 1000V, CAT II 600V.

Class of pollution: 2.

Remote Interface: GPIB, 10/100Mbit LAN, USB2.0 Full Speed Device & Host

(support U-disk), RS232.

Programming Language: RIGOL 3058 SCPI, FLUKE45, Agilent 34401A.

LXI Compatibility: LXI Class C, Version 1.1.

Warm-up Time: 30min.

Electric Technique Characteristics

DC Characteristics

Accuracy Specifications (% of reading + % of range)[1]

Function	Range ^[2]	Test Current or Burden Voltage	1 Year 23℃±5℃	Temperature Coefficient 0 ℃ to 18 ℃ 28 ℃ to 55 ℃
DC	200.000mV		0.015 + 0.004	0.0015+0.0005
Voltage	2.00000V		0.015 + 0.003	0.0010+0.0005
	20.0000V		0.015 + 0.004	0.0020+0.0005
	200.000V		0.015 + 0.003	0.0015+0.0005
	1000.00V ^[4]		0.015 + 0.003	0.0015+0.0005
DC	200.000uA	<8mV	0.055 + 0.005	0.003+0.0010
Current ^[8]	2.00000mA	<80mV	0.055 + 0.005	0.002+0.001
	20.0000mA	<0.05V	0.095 + 0.020	0.008+0.001
	200.000mA	<0.5V	0.070 + 0.008	0.005+0.001
	2.00000A	<0.1V	0.170 + 0.020	0.013+0.001
	10.0000A ^[5]	<0.3V	0.250 + 0.010	0.008+0.001
Resistance ^[3]	200.000Ω	1mA	0.030 + 0.005	0.0030+0.0006
	2.00000kΩ	1mA	0.020 + 0.003	0.0030+0.0005
	20.0000kΩ	100uA	0.020 + 0.003	0.0030+0.0005
	200.000kΩ	10uA	0.020 + 0.003	0.0030+0.0005
	2.00000ΜΩ	1uA	0.040 + 0.004	0.0040+0.0005
	10.0000ΜΩ	200nA	0.250 + 0.003	0.0100+0.0005
	100.000ΜΩ	200nA 10MΩ	1.75 + 0.004	0.2000+0.0005
Diode Test	2.0000V ^[6]	1mA	0.05 + 0.01	0.0050+0.0005
Continuity	2000Ω	1mA	0.05 + 0.01	0.0050+0.0005

NOTE:

- [1] Specifications are for 30 minute warm–up and select resolving index to 5 3/4 and calibration temperature 18 $^{\circ}$ C ~ 28 $^{\circ}$ C.
- [2] 20% over range on all ranges, except DCV 1000V, ACV 750V, DCI and ACI 10A range.
- [3] Specifications are for 4–wire resistance function, or 2–wire resistance using P/F operation. Without P/F operation, add $0.2~\Omega$ additional errors in 2–wire resistance function.
- [4] For each additional volt over \pm 500 VDC add 0.02 mV of error.
- [5] For current terminal, > 7A DC or ACRMS for 30 seconds ON and 30 seconds OFF.
- [6] Accuracy specifications are for the voltage measured at the input terminals only. 1 mA test current is typical. Variation in the current source will create some variation in the voltage drop across a diode junction.

3

Measurement Characteristics

DC Voltage

Input Resistance: 200mV and 2V range¹ $10\text{M}\Omega$ or $>10\text{G}\Omega$ selectable

(Input signals which exceed $\pm 2.5V$ in these ranges will pass the $100k\Omega$

(typical) clamp resistance.

20V, 200V and 1000V range 10MΩ±2%

Input offset current: <90pA, 25℃

Input Protection: 1000V on all ranges

CMRR (common mode rejection ratio): 120dB (For the 1kΩ unbalanced resistance in LO lead,

maximum ±500VDC).

NMRR (normal mode rejection ratio): 80dB at "slow" measurement rate

Add 20dB³ when open the "AC filter" (Settling time adds

0.35s (source impedance near zero))

Resistance

Measurement Method: Selectable 4-wire or 2-wire.

Current source referenced to LO input.

Open-circuit Voltage: P/F in <8V.

Max. Lead Resistance: 10% of range per lead for 200 Ω , 1k Ω per lead (4-wire ohms) on all

other ranges.

Input Protection: 1000V on all ranges.

DC Current

Shunt Resistor: 200uA sampling voltage<8mV

2mA sampling voltage<80mV

 1Ω for 20mA, 200mA 0.01Ω for 2A, 10A

Input Protection: Externally accessible 10A, 250V fast-melt fuse

Internal 12A, 250V slow-melt fuse

Continuity / Diode Test

Measurement Method: 1mA ±5% current source, <8V open-circuit voltage

Response Time: 123 samples / sec, with beeper Continuity Threshold: Adjustable from 1Ω to 2000Ω

Input Protection: 1000V

Setting time attentions:

Settling time in voltage measurement is affected by the source impedance, media characteristics of the cable and input signals.

AC Characteristics

Accuracy Specifications (% of reading + % of range)^[1]

				Temperature
Function	Range ^[2]	Frequency	1 Year	Coefficient
i directori	Kange	Range	23 ℃± 5 ℃	0 ℃ to 18 ℃
				28 °C to 55 °C
True RMS AC	200.000mV	20Hz - 45Hz	1.5 + 0.10	0.01+0.005
Voltage ^{[[3]}		45Hz - 20kHz	0.2 + 0.05	0.01+0.005
		20kHz - 50kHz	1.0 + 0.05	0.01+0.005
		50kHz - 100kHz	3.0 + 0.05	0.05+0.010
	2.00000V	20Hz - 45Hz	1.5 + 0.10	0.01+0.005
		45Hz - 20kHz	0.2 + 0.05	0.01+0.005
		20kHz - 50kHz	1.0 + 0.05	0.01+0.005
		50kHz - 100kHz	3.0 + 0.05	0.05+0.010
	20.0000V	20Hz - 45Hz	1.5 + 0.10	0.01+0.005
		45Hz - 20kHz	0.2 + 0.05	0.01+0.005
		20kHz - 50kHz	1.0 + 0.05	0.01+0.005
		50kHz - 100kHz	3.0 + 0.05	0.05+0.010
	200.000V	20Hz - 45Hz	1.5 + 0.10	0.01+0.005
		45Hz - 20kHz	0.2 + 0.05	0.01+0.005
		20kHz - 50kHz	1.0 + 0.05	0.01+0.005
		50kHz - 100kHz	3.0 + 0.05	0.05+0.010
	750.000V	20Hz - 45Hz	1.5 + 0.10	0.01+0.005
		45Hz - 20kHz	0.2 + 0.05	0.01+0.005
		20kHz - 50kHz	1.0 + 0.05	0.01+0.005
		50kHz - 100kHz	3.0 + 0.05	0.05+0.010
True RMS AC	20.0000mA	20Hz-45Hz	1.5 + 0.10	0.015+0.015
Current ^[5]		45Hz-2kHz	0.50 + 0.10	0.015+0.006
		2kHz-10kHz	2.50 + 0.20	0.015+0.006
	200.000mA	20Hz-45Hz	1.50 + 0.10	0.015+0.005
		45Hz-2kHz	0.30 + 0.10	0.015+0.005
		2kHz-10kHz	2.50 + 0.20	0.015+0.005
	2.00000A	20Hz-45Hz	1.50 + 0.20	0.015+0.005
		45Hz-2kHz	0.50 + 0.20	0.015+0.005
		2kHz-10kHz	2.50 + 0.20	0.015+0.005
	10.0000A	20Hz-45Hz	1.50 + 0.15	0.015+0.005
		45Hz-2kHz	0.50 + 0.15	0.015+0.005
		2kHz-5kHz	2.50 + 0.20	0.015+0.005

Additional wave crest factor error (not Sine) ^[5]			
Wave crest coefficient	Error (% range)		
1 - 2	0.05		
2 - 3	0.2		

NOTE:

[1] Specifications are for 30 minute warm—up and select measurement rate to "slow", calibration temperature 18° C - 28° C.

- [2] 20% over range on all ranges, except DCV 1000V, ACV 750V, DCI and ACI 10A range.
- [3] Specifications are for sine wave input >5% of range. 750V range P/Fed to $8x10^7$ Volt-Hz. For inputs from 1% to 5% of range and <50 kHz, add 0.1% of range additional error. For 50 kHz to 100 kHz, add 0.13% of range.
- [4] Specifications are for sine wave input >5% of range. Add 0.1% of the range for the sine wave input is $1\%\sim5\%$ of the range.
- [5] For frequency <100 kHz.

Measurement Characteristics

True RMS AC Voltage

Measurement Method: AC coupled true-RMS-measure, the DC component of input with up to

1000V on any range.

Crest factor: Crest factor on full range ≤ 3

Input Impedance: $1M\Omega \pm 2\%$ in parallel with 100pF on any ranges

Input Protection: 750VRMS on all ranges

AC filter bandwidth: 20Hz~100kHz

CMRR (common mode rejection ratio): 60dB (For the $1k\Omega$ unbalanced resistance in LO lead and <60Hz, maximum $\pm 500VDC$).

True RMS AC Current

Measurement Method: DC coupled to the fuse and shunt. AC coupled true RMS measurement

(measures the ac component only)

Crest factor: Crest factor on full range ≤ 3

Max. Input: The DC + AC current peak value <300% of the range. The RMS

current including DC current is <10A.

Shunt Resistor: 0.01Ω for 2A, 10A

 1Ω for 20mA, 200mA

Input Protection: Externally accessible 10A, 250V fast-melt fuse

Internal 12A, 250V slow-melt fuse

Setting time attentions:

Make sure the R circuit of input terminal has been completely stable before accurate measurement.

Input >300Vrms (or >5Arms) will cause the self heating of the signal conditioning component to generate error, this error is included in the characteristics of the instrument. Internal temperature variation results from the self heating will cause additional error on ac range, this error is lower than 0.02% reading, and it will disappear after a few minutes.

Frequency/Period Characteristics

Accuracy Specifications (% of reading)[1]

Function	Range	Frequency Range	1 Year 23℃±5℃	Temperature Coefficient 0 ℃ to 18 ℃ 28 ℃ to 55 ℃
Frequency	200mV to	20Hz-2kHz	0.01+0.003	0.002+0.001
Period	750V ^[2]	2kHz-20kHz	0.01+0.003	0.002+0.001
		20kHz-200kHz	0.01+0.003	0.002+0.001
		200kHz-1MHz	0.01+0.006	0.002+0.002
	20mA to	20Hz-2kHz	0.01+0.003	0.002+0.001
	10A ^[3]	2kHz-10kHz	0.01+0.003	0.002+0.001

NOTE:

- [1] Specifications are for 30 minute warm-up.
- [2] For AC input voltages 12% to 120% of range except where noted. 750V range P/Fed to 750VRMS. 200mV range specifications are for full scale or greater inputs. For inputs from 24mV to 200mV, multiply total % of reading error by 10.
- [3] For AC input current from 12% to 120% of range except where noted. 20mA range specifications are for full scale. For inputs from 5mA to 20mA, multiply total % of reading error by 10. 10A range is for AC input current from 25% to 100% of range.

Measurement Characteristics

Frequency and Period

Measurement Method: Reciprocal-counting technique. AC-coupled input using the ac voltage

or ac current measurement function.

Measurement attentions:

All frequency counters are susceptible to error when measuring low-voltage, low-frequency signals. Shielding inputs from external noise pickup is critical for minimizing measurement errors.

Setting time attentions:

Errors will occur when attempting to measure the frequency or period of an input following a dc offset voltage change. The input blocking RC time constant must be allowed to fully settle (up to 1 sec) before the most accurate measurements are possible.

9 Specifications for DM3058

Capacitance Characteristics

Accuracy Specifications (% of reading + % of range)[1,2]

Function	Range ^[2]	Test Current		Temperature Coefficient 0 °C to 18 °C 28 °C to 55 °C
Capacitance	2.000nF	200nA	3 + 1.0	0.08+0.002
	20.00nF	200nA	1 + 0.5	0.02+0.001
	200.0nF	2µA	1 + 0.5	0.02+0.001
	2.000uF	10μΑ	1 + 0.5	0.02+0.001
	200uF	100μΑ	1 + 0.5	0.02+0.001
	10000uF	1mA	2 + 0.5	0.02+0.001

NOTE:

- [1] Specifications are for 30 minute warm—up using P/F operation. Additional errors may occur for non–film capacitors.
- [2] Specifications are for 1% to 120% of range on the 1nF range and 10% to 120% of range on all other ranges.

Measurement Characteristics

Capacitance

Measurement Method: Current input with measurement of resulting ramp.

Connection Type: 2-wire

Input Protection: 1000V on all ranges

Measurement attentions:

Measurement of small capacitance is easily affected by external noise thus to cause measurement error, disable input will reduce this error.

Measurement Characteristics

Triggering and Memory

Samples per Trigger: 1 to 2,000
Trigger Delay: 8ms to 2 sec

External trigger input:

Input Level: TTL compatible (High level when left trigger input open)

Trigger Condition: Selectable Rising, Falling, Low-level, High-level. Input Impendence: $>20k\Omega$, in parallel with 400pF, DC-coupled

Min Pulse Width: 500µs

VMC Output:

Electric Level: TTL compensate (Input>= $1k\Omega$ load)

Output polarity: positive, negative(selectable)

Output impedance: 200Ω , typical

Arbitrary sensor measurement

Support thermocouple, DC voltage, DC current, resistance types (2-wire or 4-wire), capacitance and Frequency output type sensors. Build in thermocouple cold side compensate.

Preset 10groups standard sensors.

Math function

Pass/Fail, RELative, Maximum/Minimum/Average, dBm, dB, Hold, Histogram, standard deviation.

History function

Volatile Memory: 2000 reading history record.

Nonvolatile Memory:

10 groups history data storage (2000 readings/group)

10 groups sensor data storage (1000 readings/group)

10 groups instrument settings storage

10 groups random sensor settings storage

Support U-disk external storage extend